Abstract:
Online news platforms greatly influence our society and culture in both positive and negative ways. As online media becomes more dependent for source of information, a lot of fake news is posted online, that widespread with people following it without any prior or complete information of event authenticity. Such misinformation has the potential to manipulate public opinions. The exponential growth of fake news propagation have become a great threat to public for news trustworthiness. It has become a compelling issue for which discovering, examining and dealing with fake news has increased in demand. However, with the limited availability of literature on the issue of uncovering fake news, a number of potential methodologies and techniques remains unexplored. The primary aim of this paper is to review existing methodologies, to propose and implement a method for automated deception detection. The proposed methodology uses deep learning in discourse-level structure analysis to formulate the structure that differentiates fake and real news. The baseline model achieved 74% accuracy.