A Glucose-Insulin Mixture Model and Application to Short-Term Hypoglycemia Prediction in the Night Time

A Glucose-Insulin Mixture Model and Application to Short-Term Hypoglycemia Prediction in the Night Time

Abstract

Objective: Insulin-induced hypoglycemia is recognized as a critical problem for diabetic patients, especially at night. To give glucose prediction and advance warning of hypoglycemia of at least 30 minutes, various glucose-insulin models have been proposed. Recognizing the complementary nature of the models, this research proposes a Glucose-Insulin Mixture (GIM) model to predict the glucose values for hypoglycemia detection, by optimally fusing different models with its adjusted parameters to address the inter- and intra-individual variability.

Methods: Two types of classic glucose-insulin models, the Ruan model, with single-compartment glucose kinetics, and the Hovorka model, with two-compartment glucose kinetics, are selected as two candidate models. Based on Bayesian inference, GIM is introduced with quantified contributions from the models with the associated parameters. GIM is then applied to predict the glucose values and hypoglycemia events.