Wearable Sensor Based Sign Language Recognition A Comprehensive Review

Wearable Sensor Based Sign Language Recognition A Comprehensive Review

Abstract:

Sign language is used as a primary form of communication by many people who are Deaf, deafened, hard of hearing, and non-verbal. Communication barriers exist for members of these populations during daily interactions with those who are unable to understand or use sign language. Advancements in technology and machine learning techniques have led to the development of innovative approaches for gesture recognition. This literature review focuses on analyzing studies that use wearable sensor-based systems to classify sign language gestures. A review of 72 studies from 1991 to 2019 was performed to identify trends, best practices, and common challenges. Attributes including sign language variation, sensor configuration, classification method, study design, and performance metrics were analyzed and compared. Results from this literature review could aid in the development of user-centred and robust wearable sensor-based systems for sign language recognition.