Wearable Respiration Monitoring Interpretable Inference with Context and Sensor Biomarkers
Wearable Respiration Monitoring Interpretable Inference with Context and Sensor Biomarkers
Abstract
Continuous monitoring of breathing rate (BR), minute ventilation (VE), and other respiratory parameters could transform care for and empower patients with chronic cardio-pulmonary conditions, such as asthma. However, the clinical standard for measuring respiration, namely Spirometry, is hardly suitable for continuous use. Wearables can track many physiological signals, like ECG and motion, yet respiration tracking faces many challenges. In this work, we infer respiratory parameters from wearable ECG and wrist motion signals. We propose a modular and generalizable classification-regression pipeline to utilize available context information, such as physical activity, in learning context-conditioned inference models. Novel morphological and power domain features from the wearable ECG are extracted to use with these models. Exploratory feature selection methods are incorporated in this pipeline to discover application-driven interpretable biomarkers. Using data from 15 subjects, we evaluate two implementations of the proposed inference pipeline: for BR and VE. Each implementation compares generalized linear model, random forest, support vector machine, Gaussian process regression, and neighborhood component analysis as regression models. Permutation, regularization, and relevance determination methods are used to rank the ECG features to identify robust ECG biomarkers across models and activities. This work demonstrates the potential of wearable sensors not only in continuous monitoring, but also in designing biomarker-driven preventive measures.