Towards Achieving Keyword Search over Dynamic Encrypted Cloud Data with Symmetric Key Based Verifica

Towards Achieving Keyword Search over Dynamic Encrypted Cloud Data with Symmetric Key Based Verifica

Abstract:

Verifiable Searchable Symmetric Encryption, as an important cloud security technique, allows users to retrieve the encrypted data from the cloud through keywords and verify the validity of the returned results. Dynamic update for cloud data is one of the most common and fundamental requirements for data owners in such schemes. To the best of our knowledge, the existing verifiable SSE schemes supporting data dynamic update are all based on asymmetric-key cryptography verification, which involves time-consuming operations. The overhead of verification may become a significant burden due to the sheer amount of cloud data. Therefore, how to achieve keyword search over dynamic encrypted cloud data with efficient verification is a critical unsolved problem. To address this problem, we explore achieving keyword search over dynamic encrypted cloud data with symmetric-key based verification and propose a practical scheme in this paper. In order to support the efficient verification of dynamic data, we design a novel Accumulative Authentication Tag (AAT) based on the symmetric-key cryptography to generate an authentication tag for each keyword. Benefiting from the accumulation property of our designed AAT, the authentication tag can be conveniently updated when dynamic operations on cloud data occur. In order to achieve efficient data update, we design a new secure index composed by a search table ST based on the orthogonal list and a verification list VL containing AATs. Owing to the connectivity and the flexibility of ST, the update efficiency can be significantly improved. The security analysis and the performance evaluation results show that the proposed scheme is secure and efficient.