Abstract:
Optimization of stochastic epidemic information dissemination plays a significant role in enhancing the reliability of epidemic networks. This letter proposes a multi-stage decision-making optimization model for stochastic epidemic information dissemination based on dynamic programming, in which uncertainties in a dynamic environment are taken into account. We model the inherent bimodal dynamics of general epidemic mechanisms as a Markov chain, and a state transition equation is proposed based on this Markov chain. We further derive optimal policies and a theoretical closed-form expression for the maximal expected number of successfully delivered messages. The properties of the derived model are theoretically analyzed. Simulation results show an improvement in reliability, in terms of accumulative number of successfully delivered messages, of epidemic information dissemination in stochastic situations.