Learning to Adapt Across Dual Discrepancy for Cross Domain Person Re Identification

Learning to Adapt Across Dual Discrepancy for Cross Domain Person Re Identification

Abstract:

Thanks to the advent of deep neural networks, recent years have witnessed rapid progress in person re-identification (re-ID). Deep-learning-based methods dominate the leadership of large-scale benchmarks, some of which even surpass the human-level performance. Despite their impressive performance under the single-domain setup, current fully-supervised re-ID models degrade significantly when transplanted to an unseen domain. According to the characteristics of the re-ID task, such degradation is mainly attributed to the dramatic variation within the target domain and the severe shift between the source and target domain, which we call dual discrepancy in this paper. To achieve a model that generalizes well to the target domain, it is desirable to take such dual discrepancy into account. In terms of the former issue, a prevailing solution is to enforce consistency between nearest-neighbors in the embedding space. However, we find that the search of neighbors is highly biased in our case due to the discrepancy across cameras. For this reason, we equip the vanilla neighborhood invariance approach with a camera-aware learning scheme. As for the latter issue, we propose a novel cross-domain mixup scheme. It works in conjunction with virtual prototypes which are employed to handle the disjoint label space between the two domains. In this way, we can realize the smooth transfer by introducing the interpolation between the two domains as a transition state. Extensive experiments on four public benchmarks demonstrate the superiority of our method. Without any auxiliary models and offline clustering procedure, it achieves competitive performance against existing state-of-the-art methods.