High-Quality R-CNN Object Detection Using Multi-Path Detection Calibration Network

High-Quality R-CNN Object Detection Using Multi-Path Detection Calibration Network

Abstract:

Object proposals are used in two-stage detectors, such as R-CNN, to generate detection results, including category predictions and refined bounding-boxes. As a result, classification scores are assigned to refined bounding-boxes rather than object proposals. However, this procedure ignores the discrepancy of data distribution between object proposals and refined bounding-boxes. We consider this discrepancy could limit the detection accuracy. Specifically, the foreground/background imbalance on object proposals and inaccurate information from low-IoU proposals could hinder the category prediction. In this paper, we propose a detector called the Multi-Path Detection Calibration Network (PDC-Net) to address this problem. The key idea behind PDC-Net is calibrating detection results from R-CNN by considering the statistical discrepancy between object proposals and refined bounding-boxes. PDC-Net is built on Faster R-CNN. The core component in PDC-Net is the multi-path detection head, in which the base detector (from Faster R-CNN) generates detection results from object proposals and multiple calibration detectors fix incorrect outputs from the base detector using refined bounding-boxes. Experiments reveal that PDC-Net can boost detection results. Our method could reach 83.1% and 43.3% mAP respectively on PASCAL VOC and MSCOCO benchmarks, which is comparable to several state-of-the-art methods