Abstract:
Semi-autonomous vehicles equipped with assistive control systems may experience degraded lateral behaviors when aggressive driver steering commands compete with high levels of autonomy. This challenge can be mitigated with effective operator intent recognition, which can configure automated systems in context-specific situations where the driver intends to perform a steering maneuver. In this article, an ensemble learning-based driver intent recognition strategy has been developed. A nonlinear model predictive control algorithm has been designed and implemented to generate haptic feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To validate the framework, operator-in-the-loop testing with 30 human subjects was conducted on a steer-by-wire platform with a virtual reality driving environment. The roadway scenarios included lane change, obstacle avoidance, intersection turns, and highway exit. The automated system with learning-based driver intent recognition was compared to both the automated system with a finite state machine-based driver intent estimator and the automated system without any driver intent prediction for all driving events. Test results demonstrate that semi-autonomous vehicle performance can be enhanced by up to 74.1% with a learning-based intent predictor. Further, the learning-based model has a 30.9% higher driver intent recognition accuracy than the finite state machine-based method. The holistic framework that integrates human intelligence, machine learning algorithms, and vehicle control can help solve the driver-system conflict problem leading to safer operation.