Hand Gesture Recognition for Smart Devices by Classifying Deterministic Doppler Signals

Hand Gesture Recognition for Smart Devices by Classifying Deterministic Doppler Signals

Abstract:

Personal devices such as smartphones and tablets are rapidly becoming personal communication, information, and control centers. Apart from multitouch screens, human gestures are considered as a new interactive human-smart device interface. In this work, we propose a noncontact solution to implement hand gesture recognitions for smart devices. It is based on a continuous wave, time-division-multiplexing (TDM), single-input multiple-output (SIMO) Doppler radar sensor that can be realized by slightly modifying existing RF front ends of smart devices, and a machine-learning algorithm to recognize predefined gestures by classifying deterministic Doppler signals. An experimental setup emulating a smartphone-based radar sensor was implemented, and the experimental results verified the robustness and the accuracy of the proposed approach.