Fuzzy Ontology and Its Application to News Summarization in Python

Fuzzy Ontology and Its Application to News Summarization in Python

Abstract:

In this paper, a fuzzy ontology and its application to news summarization are presented. The fuzzy ontology with fuzzy concepts is an extension of the domain ontology with crisp concepts. It is more suitable to describe the domain knowledge than domain ontology for solving the uncertainty reasoning problems. First, the domain ontology with various events of news is predefined by domain experts. The document preprocessing mechanism will generate the meaningful terms based on the news corpus and the Chinese news dictionary defined by the domain expert. Then, the meaningful terms will be classified according to the events of the news by the term classifier. The fuzzy inference mechanism will generate the membership degrees for each fuzzy concept of the fuzzy ontology. Every fuzzy concept has a set of membership degrees associated with various events of the domain ontology.