Face Detection and Facial Expression Recognition System in Python

Face Detection and Facial Expression Recognition System in Python

Abstract:

A human-computer interaction system for an automatic face recognition or facial expression recognition has attracted increasing attention from researchers in psychology, computer science, linguistics, neuroscience, and related disciplines. In this paper, an Automatic Facial Expression Recognition System (AFERS) has been proposed. The proposed method has three stages: (a) face detection, (b) feature extraction and (c) facial expression recognition. The first phase of face detection involves skin color detection using YCbCr color model, lighting compensation for getting uniformity on face and morphological operations for retaining the required face portion. The output of the first phase is used for extracting facial features like eyes, nose, and mouth using AAM (Active Appearance Model) method. The third stage, automatic facial expression recognition, involves simple Euclidean Distance method. In this method, the Euclidean distance between the feature points of the training images and that of the query image is compared. Based on minimum Euclidean distance, output image expression is decided. True recognition rate for this method is around 90% - 95%. Further modification of this method is done using Artificial Neuro-Fuzzy Inference System (ANFIS). This non-linear recognition system gives recognition rate of around 100% which is acceptable compared to other methods.