Disease Influence Measure Based Diabetic Prediction with Medical Data Set Using Data Mining

Disease Influence Measure Based Diabetic Prediction with Medical Data Set Using Data Mining

Abstract:

The problem of diabetic prediction has been well studied in this paper. The disease predictions have been explored using various methods of data mining. The use of medical data set on the prediction of diabetic mellitus has been analyzed. This paper performs a detailed survey on disease prediction using data mining approaches based on diabetic data set. The presence of disease has been identified using the appearance of various symptoms. However, the methods use different features and produces varying accuracy. The result of prediction differs with the methods/measures/ features being used. Towards diabetic prediction, a Disease Influence Measure (DIM) based diabetic prediction has been presented. The method preprocesses the input data set and removes the noisy records. In the second stage, the method estimates disease influence measure (DIM) based on the features of input data point. Based on the DIM value, the method performs diabetic prediction. Different approaches of disease prediction have been considered and their performance in disease prediction has been compared. The analysis result has been presented in detail towards the development.