Comparing Different Resampling Methods in Predicting Students' Performance Using in Python

Comparing Different Resampling Methods in Predicting Students' Performance Using in Python

Abstract:

In today's world, due to the advancement of technology, predicting the students' performance is among the most beneficial and essential research topics. Data Mining is extremely helpful in the field of education, especially for analyzing students' performance. It is a fact that predicting the students' performance has become a severe challenge because of the imbalanced datasets in this field, and there is not any comparison among different resampling methods. This paper attempts to compare various resampling techniques such as Borderline SMOTE, Random Over Sampler, SMOTE, SMOTE-ENN, SVM-SMOTE, and SMOTE-Tomek to handle the imbalanced data problem while predicting students' performance using two different datasets. Moreover, the difference between multiclass and binary classification, and structures of the features are examined. To be able to check the performance of the resampling methods better in solving the imbalanced problem, this paper uses various machine learning classifiers including Random Forest, K-Nearest-Neighbor, Artificial Neural Network, XG-boost, Support Vector Machine (Radial Basis Function), Decision Tree, Logistic Regression, and Naïve Bayes.