Abstract:
Modeling statistics of image priors is useful for image super-resolution, but little attention has been paid from the massive works of deep learning-based methods. In this work, we propose a Bayesian image restoration framework, where natural image statistics are modeled with the combination of smoothness and sparsity priors. Concretely, first we consider an ideal image as the sum of a smoothness component and a sparsity residual, and model real image degradation including blurring, downscaling, and noise corruption. Then, we develop a variational Bayesian approach to infer their posteriors. Finally, we implement the variational approach for single image super-resolution (SISR) using deep neural networks, and propose an unsupervised training strategy. The experiments on three image restoration tasks, i.e., ideal SISR, realistic SISR, and real-world SISR, demonstrate that our method has superior model generalizability against varying noise levels and degradation kernels and is effective in unsupervised SISR.