A Rapid Spiking Neural Network Approach With an Application on Hand Gesture Recognition

A Rapid Spiking Neural Network Approach With an Application on Hand Gesture Recognition

Abstract:

The spiking neural network (SNN) is considered to be the third generation of neural networks featured by its low power consumption and high computing capability, which has great application potential in robotics. However, the present SNN has two limitations: 1) the neuron's spike firing time is calculated based on the iterative approach, which dramatically slows down the calculation rate of the SNN and 2) the existing learning algorithm is more suitable for the single-layer structure, which can hardly train the network with “deep structure.” To this end, this paper proposes a novel spike firing time search algorithm that can narrow the search interval. In addition, a pretrained subnet SNN is designed, which makes the SNN have more hidden layers. This setting of the SNN can effectively improve its performance in pattern recognition tasks. Furthermore, by using the surface electromyography signal (sEMG), the proposed SNN is used to recognize the hand gestures. The experimental results show that: 1) the spike firing time search algorithm can significantly increase the forward propagation rate of the SNN and 2) the proposed SNN can reach a satisfactory recognition accuracy ratio 97.4%, which is 0.9% higher than that of the fully connected SNN.