A Learning Based Selection Hyper Heuristic for Distributed Heterogeneous Hybrid Blocking Flow Shop S

A Learning Based Selection Hyper Heuristic for Distributed Heterogeneous Hybrid Blocking Flow Shop S

Abstract:

As the development of economic globalization, the distributed manufacturing has become common in modern industries. The scheduling of production resources in multiple production centers becomes an emerging topic. This paper is the first attempt to address a distributed heterogeneous hybrid blocking flow-shop scheduling problem (DHHFSP-B) with the minimization of makespan. Compared with the traditional single flow-shop scheduling, DHHFSP-B considers the collaborative production of multiple hybrid flow lines with heterogeneous layout and processing performance as well as no intermediate buffers. We firstly present a mixed-integer linear programming model to formulate DHHFSP-B and then propose a learning-based selection hyper-heuristic framework (LS-HH) for solving it. The LS-HH contains high-level strategy and low-level heuristics. In the high-level strategy, a learning probability model is built to provide the guidance to choose the suitable perturbation heuristic during the optimization process. A simulated annealing-like move acceptance is employed to determine the updating of incumbent domain solution and prevent the search from trapping into local optimum. In the low-level heuristics, a constructive heuristic is proposed based on a novel assignment rule to create the initial domain solution. Four problem-specific perturbation heuristics and a variable neighborhood search-based improvement operator are employed to search the solution space. A comprehensive computational experiment is conducted. The comparative results show that the LS-HH significantly outperforms the Gurobi solver and several closely relevant optimization methods in solving the DHHFSP-B.