Abstract:
This paper proposes computationally efficient algorithms to maximize the energy efficiency in multicarrier wireless interference networks, by a suitable allocation of the system radio resources, namely, the transmit powers and subcarrier assignment. The problem is formulated as the maximization of the system global energy efficiency subject to both maximum power and minimum rate constraints. This leads to a challenging nonconvex fractional problem, which is tackled through an interplay of fractional programming, learning, and game theory. The proposed algorithmic framework is provably convergent and has a complexity linear in both the number of users and subcarriers, whereas other available solutions can only guarantee a polynomial complexity in the number of users and subcarriers. Numerical results show that the proposed method performs similarly as other, more complex, algorithms.