A Framework for Deep Learning Emulation of Numerical Models With a Case Study in Satellite Remote Se

A Framework for Deep Learning Emulation of Numerical Models With a Case Study in Satellite Remote Se

Abstract:

Numerical models based on physics represent the state of the art in Earth system modeling and comprise our best tools for generating insights and predictions. Despite rapid growth in computational power, the perceived need for higher model resolutions overwhelms the latest generation computers, reducing the ability of modelers to generate simulations for understanding parameter sensitivities and characterizing variability and uncertainty. Thus, surrogate models are often developed to capture the essential attributes of the full-blown numerical models. Recent successes of machine learning methods, especially deep learning (DL), across many disciplines offer the possibility that complex nonlinear connectionist representations may be able to capture the underlying complex structures and nonlinear processes in Earth systems. A difficult test for DL-based emulation, which refers to function approximation of numerical models, is to understand whether they can be comparable to traditional forms of surrogate models in terms of computational efficiency while simultaneously reproducing model results in a credible manner. A DL emulation that passes this test may be expected to perform even better than simple models with respect to capturing complex processes and spatiotemporal dependencies. Here, we examine, with a case study in satellite-based remote sensing, the hypothesis that DL approaches can credibly represent the simulations from a surrogate model with comparable computational efficiency. Our results are encouraging in that the DL emulation reproduces the results with acceptable accuracy and often even faster performance. We discuss the broader implications of our results in light of the pace of improvements in high-performance implementations of DL and the growing desire for higher resolution simulations in the Earth sciences.