ZigFi Harnessing Channel State Information for CrossTechnology Communication

ZigFi Harnessing Channel State Information for CrossTechnology Communication

ZigFi Harnessing Channel State Information for CrossTechnology Communication
ZigFi Harnessing Channel State Information for CrossTechnology Communication

Abstract:

Cross-technology communication (CTC) is a technique that enables direct communication among different wireless technologies. Recent works in this area have made substantial progress, but CTC from ZigBee to WiFi remains an open problem. In this paper, we propose ZigFi, a novel CTC framework that enables communication from ZigBee to WiFi. ZigFi carefully overlaps ZigBee packets with WiFi packets. Through experiments we show that Channel State Information (CSI) of the overlapped packets can be used to convey data from ZigBee to WiFi. Based on this finding, we propose a receiver-initiated protocol and translate the decoding problem into a problem of CSI classification with Support Vector Machine. We further build a generic model through experiments, which describes the relationship between the Signal to Interference and Noise Ratio (SINR) and the symbol error rate (SER). Moreover, we extend ZigFi to multiple-to-one concurrent transmissions. We implement ZigFi on commercial-off-the-shelf WiFi and ZigBee devices. We evaluate the performance of ZigFi under different experimental settings. The results demonstrate that ZigFi achieves a throughput of 215.9bps, which is 18X faster than the state of the arts.